Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(22): 36845-36858, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017826

RESUMO

For ultra-precision machining of convex blazed grating elements there are inevitable machining errors, surface defects, and surface roughness, all of which can have an impact on their diffraction efficiency. In this paper, we use PCGrate software based on the integration method to establish the machining error model, surface defect model, and surface roughness model of convex spherical blazed grating with a curvature radius of 41.104 mm, a substrate diameter of 14 mm, a grating density of 53.97 line/mm and a blazed angle of 3.86° as the basic specification. To investigate the effect of base curvature radius error, grating period error, blazed angle error, grating ridge and valley passivation radius, Poisson burr height, and blaze surface roughness on their -1 order diffraction efficiency in the 0.95-2.5 µm spectral range. The results show that when the curvature radius error of the spherical base is less than ±80µm, the influence on diffraction efficiency can be ignored. Among the three groups of grating microstructure parameters, the influence of blazed angle on grating diffraction efficiency is the largest, followed by a grating period, and the influence of grating apex angle is the smallest, among which when the error of blazed angle is less than ±0.1° and the error of grating period is less than ±0.1µm, the influence on diffraction efficiency can be ignored. The effect of the passivation radius of the grating valley on the diffraction efficiency is smaller than that of the passivation radius of the grating ridge, and the maximum reduction of diffraction efficiency is 0.096 and 0.144 when the grating ridge and valley passivation radius are 50nm∼650 nm, respectively. The diffraction efficiency decreases significantly in the wavelength range of 1.9-2.5 µm with the increase of Poisson burr height and blaze surface roughness, and its effect on the diffraction efficiency can be neglected when the Poisson burr height is less than 0.5 µm and the blaze surface roughness value is less than RMS 1 nm. The machining error, surface defect, and surface roughness models of the convex blazed grating are optimized to provide a comprehensive machining accuracy basis for ultra-precision cutting of convex grating components.

2.
Am J Trop Med Hyg ; 109(3): 640-644, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37549899

RESUMO

Hepatic alveolar echinococcosis (AE) is a zoonotic disease caused by the metacestode of Echinococcus multilocularis. Although surgical resection is the optimal treatment for hepatic AE, some patients with hepatic AE located in special introhepatic sites cannot be radically cured by conventional surgery. Here, we report that a 10-year-old female patient was admitted to the hospital with occupying liver lesions for 6 months. Computed tomography examination showed irregular mixed-density masses in the right lobe and caudate lobe of the liver, with partial invasion of the right hepatic artery, right hepatic vein, and right branch of the portal vein. The patient was preoperatively diagnosed with hepatic AE, which cannot be cured by conventional liver lobectomy. The patient underwent semi-ex vivo liver resection with autologous liver transplantation (second hepatic portal reconstruction, posterior hepatic inferior vena cava repair, and hepatic artery repair) and biliary-intestinal anastomosis. After hospital discharge, she has kept living a healthy life without disease recurrence for 13 months until the end of the last follow-up. This case shows that semi-ex vivo hepatectomy with autologous liver transplantation might be a feasible and safe choice for certain patients with AE located in special introhepatic sites, which has provided novel experiences for the surgical treatment of hepatic AE.


Assuntos
Equinococose Hepática , Equinococose , Transplante de Fígado , Feminino , Humanos , Criança , Hepatectomia/efeitos adversos , Hepatectomia/métodos , Equinococose/diagnóstico por imagem , Equinococose/cirurgia , Equinococose Hepática/diagnóstico por imagem , Equinococose Hepática/cirurgia
3.
Micromachines (Basel) ; 14(6)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37374825

RESUMO

The technology of in situ measurement of cylindrical shapes is an important means of improving the surface machining accuracy of cylindrical workpieces. As a method of cylindricity measurement, the principle of the three-point method has not been fully studied and applied, so it is seldom used in the field of high-precision cylindrical topography measurement. Since the three-point method has the advantages of a simpler measurement structure and smaller system error compared with other multi-point methods, the research on it is still of great significance. Based on the existing research results of the three-point method, this paper proposes the in situ measurement and reconstruction technology of the cylindrical shape of a high-precision mandrel by means of a three-point method. The principle of the technology is deduced in detail and an in situ measurement and reconstruction system is built to carry out the experiments. Experiment results are verified using a commercial roundness meter and the deviation of cylindricity measurement results is 10 nm, which is 2.56% of the measurement results of commercial roundness meters. This paper also discusses the advantages and application prospects of the proposed technology.

4.
Micromachines (Basel) ; 14(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36985060

RESUMO

The radial error is an important parameter to evaluate the performance of ultra-precision spindles. The three-point method has not yet been well applied in nanometer-scale measurement due to its disadvantages of harmonic suppression and the complicated error separation process. In order to verify that the three-point method can realize the nanometer-scale measurement of the radial error in the machining environment, an in situ measurement and evaluation system is established. Experiments are performed using the system, and a comparative experiment is conducted to verify the accuracy of the system. The average value and standard deviation of the measurement results are 23.096 nm and 0.556 nm, respectively. The in situ measurement result was in good agreement with the Donaldson reversal method using a commercially available spindle analyzer.

5.
Appl Opt ; 62(6): 1616-1627, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36821327

RESUMO

To realize the flow visualization of shock train structures by Schlieren measurements in a square-to-circular transition isolator, a high-precision conformal optical window was manufactured by fly-cutting technology. According to the light refraction principle, the window's outer surface was iteratively optimized based on the super-elliptic curves of the internal flow channel. Through tolerance analysis and processing parameter optimization, the transmitted wavefront error (RMS value) of the finished window was 0.823λ (λ=632.8n m). Based on a z-type Schlieren apparatus, the high-precision Schlieren measurements were conducted through the window and processed by an image filtering process method. The results promote high-precision Schlieren observation towards square-to-circular transition isolators.

6.
Opt Express ; 31(1): 698-713, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36607003

RESUMO

With the development of short wavelength optics, high requirements are put forward for the full frequency errors of optical elements, while the processing efficiency and surface quality of traditional polishing methods are difficult to meet their requirements. In this paper, a fluid lubricated polishing method is proposed by combining non-Newtonian fluid with traditional polishing methods. According to Preston equation and shear thickening principle, the tool influence function of fluid lubricated polishing is established and verified by experiments. The results show that the fluid lubricated polishing has a very good convergence ability to the full frequency error of the workpiece. In addition, the convergence rate of fluid lubricated polishing on roughness is about twice that of chemical mechanical polishing. Finally, fluid lubricated polishing extends Preston from Newtonian fluid polishing to non-Newtonian fluid polishing.

7.
Micromachines (Basel) ; 13(10)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36296042

RESUMO

Convex blazed gratings, which can effectively broaden the spectral range and improve spectral resolution, have gradually evolved into a crucial optical component for lightweight and compact imaging spectroscopy instruments. Their design, processing, and testing involve multidisciplinary interdisciplinary scientific issues, and they continue to be a major area of research in imaging optics applications. This paper summarizes the effects of various grating groove shapes and structural parameters on the spectral range and diffraction efficiency of convex blazed gratings, after providing a brief introduction to the typical functions and applications of convex blazed gratings. Firstly, the latest progress in typical processing methods for convex blazed gratings is reviewed. It focuses on the current fabrication processes and reviews their capabilities in creating convex blazed gratings from three main types of technologies, namely ultra-precision machining, high-energy density beam processing, and chemically assisted fabrication processes. Secondly, the adaptability of the manufacturing process for convex blazed gratings on different scales is summarized, analyzing the adaptation of current procedures to various grating fabrication scales and their bottlenecks. Finally, the characterization methods and future feasible characterization methods for convex blazed gratings are reviewed. The development trend of efficient and precise preparation of convex blazed gratings is pointed out.

8.
Micromachines (Basel) ; 13(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36296084

RESUMO

The profile and concentricity of hemispherical shells affect the frequency split and quality factor of hemispherical resonators. To compensate for machining errors caused by tool wear and tool setting, an on-machine measurement (OMM) method for the profile and concentricity of hemispherical shells in ultra-precision grinding was developed without the removal of workpieces from the machine tool. The OMM utilizes an inductive lever probe to test the inner and outer surfaces of the shell. A standard sphere is utilized to calibrate the relative position of the inductive lever probe at the two different work positions. To enhance the test accuracy of the OMM, a zero-position trigger-sampling method for the inductive lever probe was developed. It was verified to achieve a stable repeatability accuracy of 0.04 µm when using the OMM to realize a single-point sampling. Hemispherical shells were tested using the proposed OMM method. The concentricity test's accuracy was verified to achieve accuracy better than 1 µm using a coordinate measuring machine and a standard sphere. The accuracy was 0.26 µm for testing the profiles of the hemispherical shell. The proposed OMM system was integrated with an ultra-precision machine tool. It is hoped that this method can help realize the integration function of machining-measurement-compensation.

9.
Appl Opt ; 61(21): 6289-6296, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-36256243

RESUMO

In order to perform the flow visualization of a shock train structure by the schlieren imaging method in the cylindrical isolator, to the best of our knowledge, a novel integrative design and processing scheme of an aluminum alloy pipe with an acrylic conformal optical window pair are proposed. The optical ray tracing and wavefront correction methods were applied to design the inner cylindrical surfaces and outer aspherical cylindrical surfaces of the optical window pair for parallel light correction based on the conjoint analysis with the processing capability. Under the tolerance analysis and the optimization of the machining path, the integrative model was fabricated on a three-axis computer numerical control machine using two-axis turning and fast tool servo machining. The wavefront aberration (peak-to-valley value) and wavefront aberration (RMS) of the optical window pair were corrected within 12.189 and 2.658λ (λ=632.8nm) in the observation area which met the requirements of high-precision schlieren observation.

10.
Appl Opt ; 61(13): 3542-3549, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256391

RESUMO

With the application spectrum moving from infrared to visible light, aluminum optics with complex forms are difficult to fabricate by the majority of existing processing methods. Possessing the highest machining precision and low processing contamination, ion beam figuring (IBF) is a better method for fabrication of aluminum optics. However, the surface roughness deteriorates with the removal depth during IBF. In this study, the extra material removal during the IBF process is studied systematically. Extra material removal consists of two parts, determined by the convolution process and the limitation of the dynamic performance of machining tools. Extra material removal can be reduced by filtering out the surface residual error with a spatial frequency higher than the cut-off frequency and reducing the iterations of the machining process. Then, the executability of the dwell time matrix and the figuring ability of the removal function are analyzed. Adjusting the working parameters (volume removal rate) reduces the requirements for dynamic performance of machining tools. Finally, a minimal material removal processing strategy for aluminum optics based on power spectral density analysis and a spatial frequency filtering method is proposed. A simulation is conducted to verify the feasibility of the proposed strategy. With the same final precision (59.8 nm PV and 4.4 nm RMS), the maximum material removal decreases nearly 36 nm by applying the strategy, which reduces roughness nearly 10 nm. This study promotes the application of IBF in the field of aluminum optics fabrication as well as improves the machining precision of aluminum optics.

11.
Opt Express ; 30(21): 39188-39206, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258465

RESUMO

The surface figure accuracy requirement of cylindrical surfaces widely used in rotors of gyroscope, spindles of ultra-precision machine tools and high-energy laser systems is nearly 0.1 µm. Cylindricity measuring instrument that obtains 1-D profile result cannot be utilized for deterministic figuring methods. Interferometric stitching test for cylindrical surfaces utilizes a CGH of which the system error will accumulated to unacceptable extent for large aperture/angular aperture that require many subapertures. To this end, a self-calibration interferometric stitching method for cylindrical surfaces is proposed. The mathematical model of cylindrical surface figure and the completeness condition of self-calibration stitching test of cylindrical surfaces were analyzed theoretically. The effects of shear/stitching motion error and the subapertures lattice on the self-calibration test results were analyzed. Further, a self-calibration interferometric stitching algorithm that can theoretically recover all the necessary components of the system error for testing cylindrical surfaces was proposed. Simulations and experiments on a shaft were conducted to validate the feasibility.

12.
Micromachines (Basel) ; 13(9)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36144158

RESUMO

The geometric accuracy of a hemispherical shell resonator (HSR) affects the assembly accuracy and final performance of a hemispherical resonant gyroscope in many ways. During the precision grinding of a resonator, the tool-setting error and wear error affect the form and positional accuracy of the inner and outer spherical surfaces. In this study, a compensation method for generating grinding of the HSR is proposed to address this problem. The geometric errors of the inner and outer spherical surfaces are systemically analyzed and a geometric model of the tool setting and wheel wear is established for generating grinding of the HSR. According to this model, a mapping relationship between the wheel pose and size, form, and positional error of the HSR was proposed. Experiments regarding machining, on-machine measurements, and error compensation were performed using the mapping relationship. The results demonstrate that the proposed method can reduce the radius error of the inner and outer spherical surfaces from 10 µm to 1 µm, sphericity from 5 µm to 1.5 µm, and concentricity from 15 µm to 3 µm following grinding. The form and positional errors are simultaneously improved, verifying the effectiveness of the proposed method.

13.
Micromachines (Basel) ; 13(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35888933

RESUMO

In this work, based on the diffraction principle of reflective blazed grating, the structure size of the convex spherical blazed grating unit is determined, the machining accuracy of the convex spherical blazed grating is formulated, the effects of tool nose radius and Poisson burr on the diffraction efficiency of the convex spherical blazed grating are analyzed, and the performances of cutting convex gratings with microcrystalline aluminum RSA6061 and RSA6061+ chemically plated NiP for two workpiece materials are compared. A convex spherical blazed grating with a radius of curvature R = 41.104 mm, substrate diameter 14 mm, grating density 53.97 line/mm, and blaze angle of roughly 3.8° is turned by a four-axis ultra-precision machining system by adjustment of the cutting tool, workpiece material, and cutting parameters, as well as modification of the layouts of the blazed grating on the convex sphere. The results of the testing of convex spherical blazed grating elements in both layouts show that the size error of the grating period is close for both layouts, the size error of grating height is smaller in the equal-along-arc layout, the blaze angle error in the equal-along-projection layout is only 0.74%, and the average roughness of the blazed surface is less than 5 nm to meet the processing quality requirements of the reflective convex spherical blazed grating. The greater the blaze angle accuracy of the blazed grating, the higher its diffraction efficiency, so the grating element with an equal-along-projection layout has a higher diffraction efficiency than the grating element with an equal-along-arc layout. RSA6061+ chemically plated NiP material is superior to RSA6061 material in Poisson burr height and blazed surface roughness, which is more suitable for Offner-type imaging spectrometers in the spectral range 0.95-2.5 µm (SWIR).

14.
Micromachines (Basel) ; 12(11)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34832766

RESUMO

With the development of optoelectronic information technology, high-performance optical systems require an increasingly higher surface accuracy of optical mirrors. The fast tool servo (FTS) based on the piezoelectric actuator is widely used in the compensation machining of high-precision optical mirrors. However, with the low natural frequency of mechanical structures, hysteresis of the piezoelectric actuators, and phase delay of the control systems, conventional FTS systems face problems such as a low working frequency and a large tracking error. This study presents a method for the design of a high-performance FTS system. First, a flexure hinge servo turret with a high natural frequency was designed through multi-objective optimization and finite element simulations. Subsequently, a composite control algorithm was proposed, targeting the problems of hysteresis and phase delay. The modified Prandtl-Ishlinskii inverse hysteresis model was used to overcome the hysteresis effect and a zero-phase error tracker was designed to reduce the phase error. The experimental results reveal that the tracking error of the designed FTS system was <10% in the full frequency range (0-1000 Hz).

15.
Opt Express ; 29(18): 28886-28900, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34615009

RESUMO

Benefiting from high specific stiffness and high reflectance, aluminum optics with a complex surface profile are widely used in aerospace optical systems which have strict requirements for volume of the systems. Contact figuring polishing process provides highly deterministic technology for the fabrication of high precision aluminum optics. However, due to the high chemical activity of aluminum, the inevitable contamination layer will generate on the surface and bring difficulties for the subsequent processes, which greatly limit the fabrication precision. Ion beam figuring (IBF) is an effectively technology that can remove the contamination layer and improve surface quality. But, the surface profile may deteriorate during IBF. In this study, through experimental method, the nonuniformity of the contamination layer is found to be the inducer for deterioration and deviation of surface profile during IBF. The mapping between the characteristics of contamination layer and dwell time of contact polishing is studied. The thickness of the contamination layer will firstly increase with dwell time and stabilize to 120 nm when the dwell time exceeds a specific value. The variation of the IBF removal function with removal depth is also revealed through experimental and theoretical methods. Due to the dynamic variation of the composition in the contamination layer during IBF, the removal function increases with the removal depth and stabilizes when the depth exceeds 60 nm (the contamination layer is fully removed). Consequently, we propose two processing strategies to improve the aluminum optics fabrication process. Comparative experiments are performed on two off-axis aspherical surfaces. The results indicate that the surface profile can be stably maintained and improved during IBF processing based on the proposed strategies. Our research will significantly improve the fabrication precision of aluminum optics and promote the application of aluminum optics to the visible and even ultraviolet band.

16.
Micromachines (Basel) ; 12(10)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34683205

RESUMO

The computer-controlled optical surface (CCOS) can process good optical surfaces, but its edge effect greatly affects its development and application range. In this paper, based on the two fundamental causes of the CCOS's edge effect-namely the nonlinear variation of edge pressure and the unreachable edge removal-a combined polishing method of double-rotor polishing and spin-polishing is proposed. The model of the combined polishing method is established and theoretically analyzed. Combined with the advantages of double-rotor polishing and spin-polishing, the combined polishing process can achieve full-aperture machining without pressure change. Finally, the single-crystal silicon sample with a diameter of 100 mm is polished by the combined polishing process. The results show that, compared with the traditional CCOS polishing, the residual error of the sample after the combined polishing process is more convergent, and the edge effect is effectively controlled.

17.
Micromachines (Basel) ; 12(7)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34357258

RESUMO

Aluminum optics are widely used in modern optical systems because of their high specific stiffness and high reflectance. With the applied optical frequency band moving to visible, traditional processing technology cannot meet the processing precision. Ion beam sputtering (IBS) provides a highly deterministic technology for high-precision aluminum optics fabrication. However, the surface quality is deteriorated after IBS. The interaction between the bombard atoms and the surface morphology evolution mechanism are not clear, and systematic research is needed. Thus, in this paper, the IBS process for single crystal aluminum with different crystallographic orientations are studied by the molecular dynamics method. The ion beam sputter process is firstly demonstrated. Then, the variation of sputter yield of the three crystal faces is analyzed. The sputter yield difference of different crystal surfaces causes the appearance of the relief structure. Then, the gravel structure generates on the single crystal surfaces and dominates the morphology evolution. The state of the atom diffusion of the specific crystal surfaces will determine the form of the gravel structure. Furthermore, the form and distribution of subsurface damage and stress distribution of three different crystal surfaces are analyzed. Although there are great differences in defect distribution, no stress concentration was found in three workpieces, which verifies that the ion beam sputter is a stress-free machining method. The process of IBS and the mechanism of morphology evolution of aluminum are revealed. The regularity and mechanism will provide a guidance for the application of IBS in aluminum optics manufacture fields.

18.
Micromachines (Basel) ; 12(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073701

RESUMO

Weak-stiffness mirrors are widely used in various fields such as aerospace and optoelectronic information. However, it is difficult to achieve micron-level precision machining because weak-stiffness mirrors are hard to clamp and are prone to deformation. The machining errors of these mirrors are randomly distributed and non-rotationally symmetric, which is difficult to overcome by common machining methods. Based on the fast tool servo system, this paper proposes a high-precision machining method for weak-stiffness mirrors. Firstly, the clamping error and cutting error compensation strategy is obtained by analyzing the changing process of the mirror surface morphology. Then, by combining real-time monitoring and theoretical simulation, the elastic deformation of the weak-stiffness mirror is accurately extracted to achieve the compensation of the clamping error, and the compensation of the cutting error is achieved by iterative machining. Finally, a weak-stiffness mirror with a thickness of 2.5 mm was machined twice, and the experimental process produced a clamping error with a peak to valley (PV) value of 5.2 µm and a cutting error with a PV value of 1.6 µm. The final machined surface after compensation had a PV value of 0.7 µm. The experimental results showed that the compensation strategy proposed in this paper overcomes the clamping error of the weak-stiffness mirror and significantly reduces cutting errors during the machining process, achieving the high precision machining of a weak-stiffness mirror.

19.
Opt Express ; 29(6): 8951-8966, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33820335

RESUMO

Aluminum optics are widely used in modern optical systems because of high specific stiffness and high reflectance. Magnetorheological finishing (MRF) provides a highly deterministic technology for high precision aluminum optics fabrication. However, the contamination layer will generate on the surface and bring difficulties for the subsequent processes, which highly limit the fabrication efficiency and precision. In this study, characteristics of the contamination layer and its formation process are firstly revealed through experimental and theoretical methods. Impurities such as abrasives are embedded into the aluminum substrate causing increasing surface hardness. The influence of the contaminant layer on machining accuracy and machining efficiency is analyzed in this study. Based on the analysis, ion beam sputtering (IBS) is induced as a contamination layer modification method. Impurities will be preferential sputtered during the process. Surface hardness and brightness will restore to the state before MRF. Moreover, the thickness of the contamination layer reduces dynamically during IBS because of the bombardment-induced Gibbsian segregation and sputter yield amplification mechanism. Consequently, we proposed a combined technique that includes MRF, IBS and smoothing polishing. Comparative experiments are performed on an elliptical shape plane surface. The results indicate that the efficiency has been increased sevenfold and surface precision is also highly improved. Our research will promote the application of aluminum optics to the visible and even ultraviolet band.

20.
Opt Express ; 29(3): 3738-3753, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770967

RESUMO

Single point diamond turning (SPDT) is highly versatile in fabricating axially symmetric form, non-axially-symmetric form and free form surfaces. However, inevitable microstructure known as turning marks left on the surface have limited the mirror's optical performance. Based on chemical mechanical polishing (CMP) mechanism, smoothing polishing (SP) process is believed to be an effective method to remove turning marks. However, the removal efficiency is relatively low. In this paper, based on Greenwood-Williamson (GW) theory, the factors that limit removal efficiency of SP are discussed in details. Influences of process parameters (work pressure and rotational speed) are firstly discussed. With further analysis, surface spectral characteristics are identified as the inherent factor affecting further efficiency improvement. According to theoretical analysis, the removal efficiency of isotropic surface is nearly 1.8 times higher than anisotropy surface like surface with turning marks. A high efficiency turning marks removal process combining ion beam sputtering (IBS) and SP is proposed in our research. With removal depth exceeding 100 nm, the isotropic aluminum surface can be constructed by IBS so that the efficiency of SP process can be greatly improved. Though deteriorated by IBS, the surface roughness will be rapidly reduced by SP process. Finally, experiments are conducted to verify our analysis. A 3.7 nm roughness surface without turning marks is achieved by new method while direct SP can only reach roughness of 4.3 nm with evident turning marks. Experimental results show that removal efficiency nearly doubled which matches well with the theoretical analysis. Our research not only can be used as a high efficiency turning marks removal and surface quality improvement method but also can be a new method for high precision aluminum optics fabrication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...